Course Schedule of MST Program ,TIGP

Semester: Fall, 2011(100 學年度上學期)

Course(科目): Advanced Physical Chemistry (I)-高等物化(I)

Time(時間): 9:1 0~12:00 am, Tuesday(T2T3T4) or 10:00~11:30 am, Tuesday,

10:00~11:30 am, Friday(T3T4,R3R4)

Room(教室): 311 IAMS 中研院原分所 R311(台大校園)

NTHU coordinator(清大教師): 倪其焜

Course speakers(授課老師): Michitoshi Hayashi 林倫年、Yen-Chu Hsu 許豔珠

Required(必修課), credit(學分): 3 Course No.(科號): TIGP727100

Date	lecturer	Date	lecturer
9/13 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/06 Tuesday 10:00~12:00	Prof. Yen-Chu Hsu
9/20 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/06 Tuesday 13:30~14:30	Prof. Yen-Chu Hsu
9/27 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/13 Tuesday 10:00~12:00	Prof. Yen-Chu Hsu
10/4Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/13 Tuesday 13:30~14:30	Prof. Yen-Chu Hsu
10/11 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/20 Tuesday 10:00~12:00	Prof. Yen-Chu Hsu
10/18 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/20 Tuesday 13:30~14:30	Prof. Yen-Chu Hsu
10/25 Tuesday 9:1 0~10:30	Prof. Michitoshi Hayashi	12/27 Tuesday 10:00~12:00	Prof. Yen-Chu Hsu
11/01 Thursday 9:1 0~10:30	Prof. Michitoshi Hayashi	12/27 Tuesday 13:30~14:30	Prof. Yen-Chu Hsu
11/08 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	1/03/2012 Tuesday 10:00~12:00	Prof. Yen-Chu Hsu
11/15 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	1/03/2012 Tuesday 13:30~14:30	Prof. Yen-Chu Hsu
11/22 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	1/10/2012 Tuesday 10:00~12:00	Prof. Yen-Chu Hsu
11/29 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	1/10/2012 Tuesday 13:30~14:30	Prof. Yen-Chu Hsu

	Part 1 (Week 1-week12)
Speaker	Prof. Michitoshi Hayashi
	林倫年教授

	The first 2 weeks	
	<pre><the 3="" first="" weeks=""></the></pre>	
	Quantum mechanical principles	
	→ Uncertainty principle and relations	
	The principle of superposition	
	The dynamics of microscopic systems	
	→Schrödinger equation →Wave function	
	Operator algebra	
	→Eigenvalues and eigenvectors →Observables	
Class Outline	→ Stationary states	
Class Outline	The Virial Theorem	
	<the 3="" last="" weeks=""></the>	
	Approximations	
	Perturbation method	
	→ Variational principle	
	Simple applications	
	→ Harmonic oscillator	
	→ Diatomic systems	
	Introduction to many electron systems	
	→ Independent particle approximation	
	→ Correlation effects	
	This course consists of two parts: introduction of (1) the basic	
	principles of quantum mechanics and (2) the essentials of the	
	solving methods of Schrödinger equation and its applications	
	to simple and important systems.	
Introduction	The first 3 weeks, we will discuss the dynamics of	
	microscopic systems and quantum mechanical principles.	
	The last 3 weeks, we will see how quantum mechanics works	
	for some of the simplest systems including hydrogen atom,	
	hydrogen molecules using several approximation techniques.	
	Problem sets will be provided weekly to trace understanding	
	of the materials.	
Grading	The final grade will be determined by	
	Problem sets (60%)	
	Exam (40%)	
Textbook	Lecture Notes	
	Reference	
	Atkins' Physical Chemistry	
	Tidino Tiljoioui Onomiou j	

	Part 2 (Week 13-week18)
Speaker	Prof. Yen-Chu Hsu
	許豔珠教授

	1. Symmetry and symmetry classification	
	2. Group theory	
Class Outline	3. Symmetry in Quantum Theory	
	4. Rotational spectroscopy: selection rules, line width and	
	stark effect.	
	5. Rotational spectroscopy and Astrophysics	
	This part will follow closely the textbook (chapter 12 and	
Introduction	section 1-8 of chapter 13). Additional handout will be given in	
	the classes.	
	1. Homework (40%).	
Grading	2. Attendance (25%).	
	3. Examination (35%).	
Textbook	Atkin's Physical Chemistry, 8 th edition(Oxford Univ., 2006)	